A Novel Saccharomyces cerevisiae FG Nucleoporin Mutant Collection for Use in Nuclear Pore Complex Functional Experiments

نویسندگان

  • Rebecca L. Adams
  • Laura J. Terry
  • Susan R. Wente
چکیده

FG nucleoporins (Nups) are the class of proteins that both generate the permeability barrier and mediate selective transport through the nuclear pore complex (NPC). The FG Nup family has 11 members in Saccharomyces cerevisiae, and the study of mutants lacking different FG domains has been instrumental in testing transport models. To continue analyzing the distinct functional roles of FG Nups in vivo, additional robust genetic tools are required. Here, we describe a novel collection of S. cerevisiae mutant strains in which the FG domains of different groups of Nups are absent (Δ) in the greatest number documented to date. Using this plasmid-based ΔFG strategy, we find that a GLFG domain-only pore is sufficient for viability. The resulting extensive plasmid and strain resources are available to the scientific community for future in-depth in vivo studies of NPC transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex.

Directional export of messenger RNA (mRNA) protein particles (mRNPs) through nuclear pore complexes (NPCs) requires multiple factors. In Saccharomyces cerevisiae, the NPC proteins Nup159 and Nup42 are asymmetrically localized to the cytoplasmic face and have distinct functional domains: a phenylalanine-glycine (FG) repeat domain that docks mRNP transport receptors and domains that bind the DEAD...

متن کامل

A role for nucleoporin FG repeat domains in export of human immunodeficiency virus type 1 Rev protein and RNA from the nucleus.

The human immunodeficiency virus type 1 Rev protein contains a nuclear export signal (NES) that is required for Rev-mediated RNA export in mammals as well as in the yeast Saccharomyces cerevisiae. The Rev NES has been shown to specifically interact with a human (hRIP/RAB1) and a yeast (yRip1p) protein in the two-hybrid assay. Both of these interacting proteins are related to FG nucleoporins on ...

متن کامل

Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins.

Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain o...

متن کامل

Rapid Evolution Exposes the Boundaries of Domain Structure and Function in Natively Unfolded FG Nucleoporins*□S

Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain o...

متن کامل

Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker’s Yeast

Nucleocytoplasmic transport is highly selective, efficient, and is regulated by a poorly understood mechanism involving hundreds of disordered FG nucleoporin proteins (FG nups) lining the inside wall of the nuclear pore complex (NPC). Previous research has concluded that FG nups in Baker's yeast (S. cerevisiae) are present in a bimodal distribution, with the "Forest Model" classifying FG nups a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015